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Abstract Nuclear Resonant Inelastic X-ray Scattering (NRIXS) is a spectroscopy method
to study atomic vibrations and dynamics, currently done with synchrotron radiation at a few
high energy third generation facilities. It finds a wide range of applications in condensed
matter physics, materials science, chemistry, biophysics, geosciences, and high-pressure
researches. Many atomic dynamics and lattice thermodynamics information can be derived
from NRIXS measurements. Phonon Density of States (DOS) characterizes lattice dynamics
of a material and can be derived under the quasi-harmonic approximation. Combined with
modeling and simulations, results from NRIXS can provide unique and clarifying insights
into many fields of research. As for a spectroscopic technique, in order to be able to pro-
vide reliable information, close attention should be paid to many issues during experiments
and data analysis afterwards. Here we discuss several issues relevant to its data analysis,
namely, those of multiple sites, background treatments, and error estimates for some derived
quantities.
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1 Introduction

Nuclear Resonant Inelastic X-ray Scattering (NRIXS), also called Nuclear Inelastic Scat-
tering (NIS), and Nuclear Resonant Vibrational Spectroscopy (NRVS), is a well established
synchrotron radiation technique at major light sources around the world and has a large user
base consisting of researchers from a diverse collection of fields. Using nuclear resonances
as probes, it can measure atomic vibrations in a unique way. This necessitates a thorough
understanding of the scattering process and sophisticated data analysis methods to extract
information from measurements. There are many excellent reviews of this method in the
literature [1–6].

We will discuss a few aspects of its data analysis process. In Section 2 we investigate
the case of multiple nonequivalent sites. Noise and background in a measured spectrum is a
critical issue. However, post experiment, it is a very difficult problem to deal with. We try
to frame the problem and give a brief discussion in Section 3. Lastly, in Section 4, we list
formulae to estimate error bars of the derived moments of a spectrum.

2 Multiple sites

In most of NRIXS studies, the resonant isotope resides at one particular crystal site in the
samples. However, many solids have nonequivalent sites for atoms of the same species.
One example is magnetite (Fe3O4), where Fe ions occupy two sites with different coordi-
nations. Specifically, the tetrahedral site holds Fe3+ ions, while the octahedral site houses
both Fe2+ and Fe3+ ions. Two studies have considered different contributions to phonon
DOS from the two sites in magnetite [7, 8]. In cases of amorphous materials, all the lattice
sites are nonequivalent in principle. Nonequivalent sites imply different surroundings, often
different coordinations, which may lead to different force constants applying to atoms at the
sites. Nonequivalent sites should contribute differently to phonon density of states.

In the follwoing pages we address the questions of how to interpretate measured NRIXS
spectrum when there are nonequivalent sites in the sample, and can phonon DOS be
extracted and under what conditions. Some of these issues were discussed briefly in the
context of Lamb-Mössbauer factor and second-order Doppler shift [9].

NRIXS is an incoherent inelastic process. It measures the number of nuclear resonance
absorption events as a function of energy transfer. The typical setup of NRIXS precludes
any distinction among resonant nuclei. Thus measured phonon excitation spectrum consists
of contributions from all sites with resonant isotope. The cross section per nucleus is given
by [3, 10]

σ(k, ω) = π

2
σ0� S(k, ω) (1)

where �ω = E − E0 is the diffence between incident X-ray energy and the nuclear res-
onance energy. The measured spectrum is prortional to Ñσ (k, ω) and Ñ is the number of
resonant nuclei, which may be smaller than N , the number of all atoms in the sample. The
cross section factorizes into the properties of the probe - the maximum nuclear resonant
absorption cross section σ0 and the total natural linewidth of the excited nuclear level � -
and the dynamical property of the scattering system, which is a Fourier transform

S(k, ω) ≡ 1

2π

∫
dtdr ei(kr−ωt)Ga(r, t) (2)
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of the particle autocorrelation function of a many-body system [11],

Ga(r, t) = 1

Ñ

〈∑
ν

∫
dr′δ

(
r + rν(0) − r′) δ

(
r′ − rν(t)

)〉

T

(3)

where ν enumerates resonant nuclei, and rν is the position of the ν-th nucleus. The statis-
tical average at a given temperature T is indicated by 〈· · · 〉T . It is similar to the dynamic
structure factor S(q, ω), a function of energy and momentum transfer defined by the same
equation but with the particle pair correlation function instead. Phonon dispersions can be
determined by measuring the dynamic structure factor with inelastic X-ray scattering and
coherent inelastic neutron scattering. In contrast, the function S(k, ω) obtained from NRIXS
is a function of energy transfer and the incident X-ray momentum instead of momentum
transfer. It can be interpreted as the phonon excitation probability density.

With the help of sum rules [12], one can properly normalize measured spectrum and
obtain the inelastic part of the dynamical function S(k, ω �= 0). The elastic S(k, 0) is then
calculated according to the fact that normalization of S with respect to ω is 1. This is the
recoil-free fraction, or Lamb-Mössbauer factor. From this phonon excitation probability
density function, one can also calculate certain dynamical properties of the nuclei involved.
These include averaged kinetic energy and second order Doppler shift, and averaged force
constant in the incident photon direction.

Many dynamic and thermodynamic properties can be inferred from phonon DOS. Its
detailed structure is obviously the focus of many lattice dynamics studies. So one would
want to know if it can be extracted from NRIXS measurements. Phonon DOS is related to
one-phonon excitation spectrum in a stright forward way, which will be shown below. How-
ever, scattering from multiple phonons has appreciable probabilities at finite temperatures.
In order to derive DOS, we need to separate one-phonon spectrum from S(k, ω).

Now we seek to interpret the measured phonon excitation probability density function in
terms of DOS, and in doing so to reveal the method by which, and more importantly under
what conditions, one may derive DOS from this function.

Let us introduce an intermediate scattering function F(k, t), as the inverse Fourier
transform of the phonon excitation probability density function with respect to ω, so that

S(k, ω) = 1

2π

∫
F(k, t) e−iωt dt , (4)

and

F(k, t) =
∫

dr eikrGa(r, t) (5)

= 1

Ñ

〈∑
ν

e−ikrν (0)eikrν (t)

〉

T

. (6)

In harmonic lattice model, we can calculate the intermediate scattering function as
defined in (6) to be [11],

F(k, t) = 1

Ñ

Ñ∑
ν

e−2Wν(k) e2Mνν(k,t) (7)
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where

2Wν(k) =
∑

s

(
�

2m̃Nωs

) (
k · εν

s

)2
(

2ns + 1
)

(8)

2Mνν(k, t) =
∑

s

(
�

2m̃Nωs

)
(9)

× (
k · εν

s

)2
{
(ns + 1)eiωs t + nse

−ωs t
}

and m̃ is the mass of resonant isotope. We use s to label phonon modes, of which ωs and εν
s

are the phonon frequency and the polarization vector respectively, and ns the phonon occu-
pation number. In a crystal, sets of polarization vectors are the same at all equivalent sites,
so that these sites share the same 2Wν(k) and 2Mνν(k, t). We can then group the equivalent
site terms together and rewrite the right hand side of (7) into sums of non-equivalent sites,
and suppose there are n of them,

F(k, t) =
n∑
j

pj fj (k) e2Mjj (k,t) (10)

where pj = Ñj /Ñ is the fraction of equivalent sites of type j among all the sites occupied
by resonant nuclei with

∑
pj = 1, and fj (k) = e−2Wj (k) is the directional Lamb-

Mössbauer factor of that site. The site specific contributions to the intermediate scattering
function can be defined as

Fj (k, t) = fj (k) e2Mjj (k,t) , (11)

so that F(k, t) = ∑
pjFj (k, t).

The expansions of the exponential terms in (10) correspond to various multi-phonon con-
tributions. The first order one-phonon term is related to single phonon excitation probability
desity and DOS,

S
(1)
j (k, ω) = fj (k)

2π

∫
2Mjj (k, t) e−iωt dt (12)

Dj (k, ω) = �ω (1 − e−β�ω)

fj (k) ER

S
(1)
j (k, ω) (13)

for every j , and ER is the recoil energy of nucleus and β = 1/kBT .
Now we can express the measured phonon excitation probability density in terms of site

specific phonon DOS.

S(k, ω) =
n∑
j

pj

fj (k)

2π

∫
e2Mjj (k,t) e−iωt dt (14)

with

2Mjj (k, t) =
∫

ER

�ω (1 − e−β�ω)
Dj (k, ω) eiωt dω , (15)

fj (k) = exp

(
−ER

∫
coth(β�ω/2)

�ω
Dj (k, ω) dω

)
. (16)

Given individual site specific DOS, one can use these equations to simulate the spectrum
measured in a NRIXS experiment. The projected partial DOS is defined as

Dj (k, ω) = 1

N

3N∑
s=1

(
k̂ · ε

j
s

)2
δ
(
ω − ωs

)
, (17)
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where k̂ = k/k is the unit vector of incident photon direction.
Next, let us look at the question that whether phonon DOS can be derived from the

spectrum measured in a NRIXS experiment. The key to understand this is in (10), whose
left-hand side is known, the Fourier transform of measured spectrum. The nonequivalent site
fractions pj are also supposedly known as sample characteristics. The other two quantities
are unknown and one of them, 2Mjj (k, t), is directly related to site-specific phonon DOS
through (12) and (13).

For a crystal where the resonant nuclei occupy only the equivalent sites, (10) is simplified
to contain only two unknowns, f (k) and M(k, t), of which the Lamb-Mössbauer factor
is solved from moment sum rules and normalization [12, 13]. Then function M(k, t) is
calculated from the inverse Fourier transform of the measured spectrum S(k, ω), and from
which the one-phonon spectrum and the projected partial DOS are calculated. This is the
standard procedure of extracting phonon DOS from a NRIXS spectrum [14].

When there are n nonequivalent sites occupied by the resonant nuclei, we can see that
in (10) we have 2n unknowns. There are n normalization conditions, one for each site-
specific spectrum. It applies to the whole spectrum as well. So as discussed above, from
moment sum rules we can get an averaged Lamb-Mössbauer factor,

f (k) =
∑
j

pj fj (k) . (18)

We have an underdetermined system. To be able to solve it, one has to find additional n − 1
equations in order to derive site specific phonon DOS. If the site specific contributions to
the measured spectrum can be distinguish and identified, that is, the following sum can be
resolved,

S(k, ω) =
∑
j

pj Sj (k, ω) (19)

which generally require only n − 1 additional conditions, then the system is broken down
into n single-site problems and each is solved as outlined above.

Now, to answer the question stated earlier, additional conditions and/or experiments are
needed for one to be able to derive phonon DOS from the spectrum measured in a NRIXS
experiment. The procedure described above for extracting phonon DOS in a single site
system breaks down when multiple sites exist. If we ignore this fact, and still apply the
algorithm outlined above for unique site, the then derived DOS and the separation of mul-
tiphonon spectra are quite questionable. Since in doing so, we are forcing the following
condition in (10),

F(k, t) =
∑
j

pj fj (k) e2Mjj (k,t) = f (k) e2M ′(k,t) . (20)

It is not difficult to see that 2M ′(k, t) is definitely not the sum of all 2Mjj (k, t)’s. There is
no simple way to relate them.

Even though for multiple site cases we cannot derive phonon DOS, as we have shown,
the NRIXS spectrum can still be quite helpful in modeling of materials. If we have models
for the site-specific DOS, then S(k, ω) can be calculated using some of the equations shown
above, and compared to a NRIXS measurement. Of course in doing so one has to be very
careful, since uniqueness is lacking in this approach. Quite different sets of components can
yield same sum.

Now let’s consider some special cases when phonon DOS can be obtained. One excep-
tion is the case of amorphous materials. There, if the local order is preserved, or the local
environment is sufficiently similar, we can expect every lattice site has almost identical
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vibrational frequency distribution. Thus we have recovered the single-site condition as an
approximation.

Another special case where phonon DOS can be derived is when multiphonon contribu-
tion to S(k, ω) can be neglected and all the nonequivalent sites share same Lamb-Mössbauer
factor, or at least approximately. Multiphonon contribution is negligible when f (k) is high,
for example, when sample is at low temperatures. Then DOS is calculated according to (13)
with S(1)(k, ω) replaced by the measured S(k, ω). This is demonstrated in the following
approximation of (10),

F(k, t) =
∑
j

pj fj (k) e2Mjj (k,t)

�
∑
j

pj fj (k) [ 1 + 2Mjj (k, t) ] (21)

= f (k)

⎡
⎣ 1 +

∑
j

pj fj (k)

f (k)
2Mjj (k, t)

⎤
⎦ . (22)

In this case, the DOS derived is a weighted sum of those from all NR sites.

3 Noise background in a NRIXS spectrum

A measured NRIXS spectrum can be modelled in terms of counts as a function of energy,

I (E) =
∫ [

AS(E′) − B δ(E′)
]
R(E − E′) dE′ + XE (23)

where S(E) is the phonon excitation probability density function defined in (2) with E =
�ω the energy diffence between incident X-ray and the nuclear resonance. The measured
spectrum is the result of a convolution of S(E) with an instrumentation resolution function
R(E) determined by the high-resolution monochromator used in the measurement. This
resolution function is measured by the way of nuclear forward scattering (NFS). The factor
A is an unknown normalization factor. The term with a factor B describes the phenomenon
of “elastic peak deficit” which has been discussed in many places [13, 15, 16]. The factors
A and B can be estimated by using moment sum rules [12]. This term was discussed in
Ref. [9, 13].

The last term in the above model represents background noise in the measurement. At
any energy point E, XE is a sum of single measureaments of many stochastic variables
having the noise spectra when the monochromator is tuned to energy E at different times
during a measurement. It is a sum typically, due to the fact that a measurement consists of
many so called energy scans.

Ideally, all these stochastic variables follow identical probability density distributions,
which discribes a constant noise spectrum over the course of a measurement. This is almost
never the case in practice. The best an experimenter can do is to increase the signal to noise
ratio, thus making the first term much larger than the second, to the extend that it can be
ignored safely, over the relevant and interested energy range.

A common practice in data processing is to subtract a constant background from the
measured spectrum I (E) and treat the result as the first term on the right-hand side of (23).
Thus one has pushed the variations into the reduced S(E) effectively. Another attempt is
to exploit both ends of an energy spectrum, extend the approximation to the first order. If
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one is reasonably sure about the noise levels at both ends, then an interpolation in-between
the two end points can be used as an approxy for background noise. Indeed a NRIXS code
SciPhon [17] employs this method to remove background.

As mentioned before, the factors A and B can be estimated using sum rules. Here we
give the results,

A = I1

ER

+
(

1 − r1

ER

)
I0 + r1

ER

x0 − 1

ER

x1 (24)

B = I1

ER

− r1

ER

I0 +
(

1 + r1

ER

)
x0 − 1

ER

x1 (25)

where various moments are defined as the following,

In =
∫

(E − ER)n I (E) dE (26)

rn =
∫

En R(E) dE (27)

xn =
∑

i

En
i XEi

(28)

The moments of background noise xn are very small compared to other terms in (24–25).
The odd moments of noises could be even smaller due to possible cancellation from the
negative energy side of the spectrum. If the resolution function used in an experiment is
reasonably symmetric, that is, its first moment r1 is negligible compared to ER , then the
normalization factor A is almost not influenced by the sum of the background. However,
in many low temperature studies, the energy range over which data is taken is often highly
skewed to the positive side, which would likely result in a large contribution from x1. The
factor B is relevant only under the elastic peak. It is influenced by both moments of the
noises. This will add uncertainties to the derivation of the f -factor, fLM .

4 Error estimates of NRIXS moments

Moments of the phonon excitation probability density function S(E) provide information of
atomic dynamics of a sample studied. The 0-th moment is relevant to the Lamb-Mössbauer
factor fLM ; the first moment is the nucleus recoil energy; the second moment is the mean
kinetic energy, thus related to second order Doppler shift; and the third moment is the mean
foce constant experienced by the resonant nucleus.

Let us define central moments of S(E) [16],

Rk ≡
∫ +∞

−∞
(E − ER)k S(E) dE (29)

which is related to the moments In of measured spectrum, rn of resolution function, and xn

of noises, (26–28), in the following way,

In = A

n∑
k=0

Ck
n rn−k Rk − B

n∑
k=0

Ck
n (−ER)n−k rk +

n∑
k=0

Ck
n (−ER)n−k xk (30)

where Ck
n are the binomial coefficients.

To simplify the discussion and estimate error contributions from various factors, we
assume a perfect resolution function R(E) = δ(E), a constant background XE = x, and no
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elastic peak deficit B = 0. The no elastic peak deficit assumption can be made for moments
calculations, because S(0) does not contribute to Rk except for k = 0 which is a trivial case.
We also write the relation for discrete values of Ei as in an energy scan. In doing so, we
have the much simplified (23),

Ii = A Si + x (31)
and for moments,

Rk =
∑

i

(Ei − ER)k Si ΔE (32)

Next we will consider several contributions to the error bars of derived Rk from a
measurement. This is to supplement previous discussions of error estimates [9, 16].

4.1 Error due to counting statistics

Due to counting statistics, S(E) has uncertainties at each spectral point,

Si ± σSi
(33)

According to (31), with respect to counts Ii ,

σ 2
Si

= 1

A2
σ 2

Ii
(34)

Assuming Poisson statistics, σ 2
Ii

= Ii , we have

σ 2
Si

= 1

A2
Ii = 1

A
Si + 1

A2
x (35)

Thus for the moments we have,

σ 2
Rk

=
∑

i

[
ΔE (Ei − ER)k

]2
σ 2

Si

= ΔE

A2
I2k (36)

= ΔE

A
R2k + xΔE

A2

∑
i

(Ei − ER)2k ΔE (37)

4.2 Error due to spectrum normalization

With respect to normalization factor A,

σ 2
Si

= (Ii − x)2

A4
σ 2

A (38)

For the moments we have,

σ 2
Rk

=
∑

i

[
ΔE (Ei − ER)k

]2
σ 2

Si

= σ 2
A

ΔE

A4

∑
i

(Ei − ER)2k (Ii − x)2 ΔE (39)

It should be noted that the uncertainty of normalization factor σA is not an independent
variable, as one can tell from (31) that it is related to counts and background,

A = I0 − x0 (40)

The above result can be used to estimate the effect of normalization on the derived moments.
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4.3 Error due to background subtraction

With respect to the assumed constant background x,

σ 2
Si

= 1

A2
σ 2

x (41)

For the moments we have,

σ 2
Rk

=
∑

i

[
ΔE (Ei − ER)k

]2
σ 2

Si

= σ 2
x

Δ2
E

A2

∑
i

(Ei − ER)2k (42)

In addition to this uncertainty, we can also estimate the effect on derived moment caused
by background subtraction. The sensitivity of Rk to a change in x is,

ΔRk

Δx
= −ΔE

A

∑
i

(Ei − ER)k (43)

4.4 Errors due to energy scale uncertainties

Another major source of systematic errors come from energy scale of a measurement. In
an NRIXS experiment, the energy value at each point during a scan is derived from the
high-resolution monochromator parameters, including the temperatures of its crystals. Let
us represent these uncertainties in the following way. At each energy point,

Ei = Ẽi + ε + εi + δ Ẽi (44)

with Ẽi represents the true energy at each point. There could be a uniform shift ε of the
energies, i.e., a shift of energy zero reference, which might be resulted by fitting the elastic
peak, while εi allows for a random uncertainty in the energy calculation at each point. A
scaling error of 1 + δ might happen as well. Higher order deviations can be added into the
above model. However, they ought to be very small in a reasonably well calibrated system.

The effects of random energy variations εi and scaling error of δ were considered in
Ref. [16]. Here we only list the sensitivity of moments to an energy shift,

ΔRk =
∑

i

[
k (Ei − ER)k−1 Si ΔE

]
ε = k Rk−1 ε (45)

5 Concluding remarks

After 20 years of exciting developments and applications, NRIXS method has matured, as
users of this technique now ask for ever more precise and quantifying results from mea-
surements. While this will ultimately come from hardware improvements and innovations
in light sources, x-ray optics, and detectors, developments in data analysis can help reser-
achers better understand what information is contained in a measurement and get the most
out of existing data sets. Here we only mentioned a few aspects of NRIXS data analy-
sis. There are many other topics need further investigations and developments, e.g., elastic
peak treatment, sound velocity derivation, spectrum de-convolution, anharmonicity, just to
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name a few. With the availability of increasing computing power and sophisticated statisti-
cal methods, we expect to be able to provide more reliable results tailored to specific needs
of individual research groups.
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