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Abstract We synthesised a series of seven mononuclear and two trinuclear Schiff base
coordination compounds. All nine complexes have been analysed by Mössbauer and IR
spectroscopy. The Mössbauer spectra reveal a doublet, which are related to the high spin
state (S = 5/2) of the iron(III) centres.
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1 Introduction

Certain transition metal complexes may change their electronic structure due to external
stimuli (e.g. temperature, pressure, irradiation, etc.). These - so called - spin crossover
(SCO) coordination compounds mostly consist of iron(II), iron(III) or cobalt(II) centres [1–
3]. These compounds may be used in electric storage devices or sensors by external stimuli
due to the so affected spin transition.
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Table 1 Mössbauer parameters of the discussed compounds from Figs. 1–9 relative to α−Fe, with deviations
in brackets

Compound δIS/mm · s−1 �EQ/mm · s−1 Spin state Figure

[Fe(BrL5)Cl] 0,45 (±0,06) 0,79 (±0,01) HS Fig. 1

[Fe(BrL5)N3] 0,33 (±0,10) 0,83 (±0,17) HS Fig. 2

[Fe(BrL5)NCS] 0,45 (±0,08) 1,01 (±0,12) HS Fig. 3

[Fe(BrL5)NCSe] 0,31 (±0,08) 0,01 (±0,13) HS Fig. 4

[Fe(ClL5)Cl] 0,42 (±0,06) 1,19 (±0,10) HS Fig. 5

[Fe(ClL5)NCS] 0,37 (±0,03) 1,02 (±0,05) HS Fig. 6

[Fe(ClL5)NCSe] 0,40 (±0,02) 0,76 (±0,03) HS Fig. 7

Dendr.-[Fe(BrL5)] 0,40 (±0,03) 0,76 (±0,05) HS Fig. 8

Dendr.-[Fe(ClL5)] 0,39 (±0,01) 0,76 (±0,01) HS Fig. 9

A suitable coordination sphere for iron(III) was found to be of N4O2-donating lig-
ands [4]. Krüger et al. [5] developed an asymmetric pentadentate ligand out from the salicy-
laldehyde derivatives and N-(2-aminoethyl)-1,3-propanediamine. We synthesised a series of
Schiff base iron(III) coordination compounds which have been analysed via Mössbauer and
IR spectroscopy as well as ESI-MS. For this the symmetric pentadentate N3O2-donating lig-
ands (X-salten = XL5)) were made by the condensation of N-(3-aminopropyl)propane-1,3-
diamine with either 5-bromosalicylaldehyde (BrL5) or 5-chlorosalicylaldehyde (ClL5). The
octahedral coordination sphere is completed by the pseudohalide monodentate N-donating
ligands azide, seleno- and thiocyanate as well as the precursor chloride.

In a second pathway we synthesised a dendritic complex system based on polyamine den-
drimers functionalized in their periphery with the halogenated salicylaldehydes to form mul-
ticentered Schiff base coordination compounds. We started with tris(2-aminoethyl)amine
and extended it to the first generation dendrimer (G1) in 2 steps by adding acrylonitrile and
reducing it with DIBAL-H [6].

2 Experimental

We followed the synthetic route described in the literature [5, 7]. The educts were obtained
from Sigma Aldrich and used without any further purification.

The Mössbauer spectra have been collected at room temperature on a MIMOSIIa device
from the Johannes Gutenberg-Universität Mainz with a 57Co/Rh source. The isomer shifts
are given relative to α-iron. The IR-Spectra have been collected on a Tensor27 from Bruker
and the ESI-mass spectra were recorded on a Q-Tof Premier mass spectrometer from
Micromass.

[Fe(XL5)(Cl)]:

N-(3-aminopropyl)propane-1,3-diamine (10 mmol) and 5-chlorosalicylaldehyde or 5-
bromosalicylaldehyde (20 mmol), respectively, were dissolved in 120 cm3 methanol. The
solution was boiled under reflux for 2 h, FeCl3 · 6H2O (10 mmol) in 25 cm3 methanol was
added and the mixture was further boiled for 1 h. After cooling in a fridge for 24 h, the
product was filtered off and dried at room temperature.
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Fig. 1 The Mössbauer spectrum of the complex [Fe(BrL5)Cl] with an isomer shift (relative to αFe)
δIS = 0.45 mm/s and quadrupole splitting �EQ = 0.79 mm/s which are typical for iron(III) centre in high
spin state
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Fig. 2 The Mössbauer spectrum of the complex [Fe(BrL5)N3] with an isomer shift (relative to αFe)
δIS = 0.33 mm/s and quadrupole splitting �EQ = 0.83 mm/s

[Fe(BrL5)(Cl)]:
C20H21FeN3O2Br2Cl ([M-Cl−]+ = 551.053); IR (KBr): v(N-H) = 3260 cm1, v(C-
H) = 2924, 2858 cm1, v(C=N) = 1616, 1610 cm1, v(C=C arom.) = 1528 cm1, δ(=C-H,
out-of-plane) = 820 cm1.

[Fe(ClL5)(Cl)]:
C20H21FeN3O2Cl3 ([M-Cl−]+ = 462.151); IR (KBr): v(N-H) = 3208 cm1, v(C-
H) = 2978, 2944 cm1, v(C=N) = 1624 cm1, v(C=C arom.) = 1530 cm1, δ(=C-H,
out-of-plane) = 821 cm1.
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Fig. 3 The Mössbauer spectrum of the complex [Fe(BrL5)NCS] with an isomer shift (relative to αFe)
δIS = 0.45 mm/s and quadrupole splitting �EQ = 1.01 mm/s
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Fig. 4 The Mössbauer spectrum of the complex [Fe(BrL5)NCSe] with an isomer shift (relative to αFe)
δIS = 0.31 mm/s and quadrupole splitting �EQ = 1.01 mm/s

[Fe(ClL5)(A)]:
[Fe(ClL5)(Cl)] (1mmol) was dissolved in 200 cm3 methanol under reflux. After 15 minutes
the mixture was filtered of and a solution of KNCS or KNCSe (1 mmol), respectively, in
30 cm3 methanol was added to the filtrate. This mixture was boiled for an additional 15
minutes and left in a beaker for precipitation at room temperature for 7 days.

[Fe(ClL5)(NCS)]:
C21H21FeN4O2Cl2S ([M-NCS−]+ = 462.151); IR (KBr): v(N-H) = 3252 cm1, v(C-
H) = 2928, 2865 cm1, v(NCS) = 2063 cm1, v(C=N) = 1619 cm1, v(C=C
arom.) = 1530 cm1, δ(=C-H, out-of-plane) = 824 cm1.
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Fig. 5 The Mössbauer spectrum of the complex [Fe(ClL5)Cl] with an isomer shift (relative to αFe)
δIS = 0.42 mm/s and quadrupole splitting �EQ = 1.19 mm/s
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Fig. 6 The Mössbauer spectrum of the complex [Fe(ClL5)NCS] with an isomer shift (relative to αFe)
δIS = 0.37 mm/s and quadrupole splitting �EQ = 1.02 mm/s

[Fe(ClL5)(NCSe)]:
C21H21FeN4O2Cl2Se ([M-NCSe−]+ = 462.151); IR (KBr): v(N-H) = 3249 cm1,
v(CH) = 2929, 2868 cm1, v(NCSe) = 2067 cm1, v(C=N) = 1616 cm1, v(C=C
arom.) = 1529 cm1, δ(=C-H, out-of-plane) = 823 cm1.

[Fe(BrL5)(A)]:

[Fe(BrL5)(Cl)] (0.85 mmol) was dissolved in 200 cm3 methanol under reflux. After 15
minutes the mixture was filtered of and a solution of KNCS, KNCSe or NaN3 (0.85 mmol),
respectively, in 25 cm3 methanol was added to the filtrate. This mixture was boiled for an
additional 15 minutes and left in a beaker for precipitation at room temperature for 7 days.
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Fig. 7 The Mössbauer spectrum of the complex [Fe(ClL5)NCSe] with an isomer shift (relative to αFe)
δIS = 0.40 mm/s and quadrupole splitting �EQ = 0.76 mm/s

[Fe(BrL5)(NCS)]:
C21H21FeN4O2Br2S ([M-NCS−]+ = 551.053); IR (KBr): v(N-H) = 3260 cm1, v(C-
H) = 2928, 2868 cm1, v(NCS) = 2056 cm1, v(C=N) = 1638, 1610 cm1, v(C=C
arom.) = 1525 cm1, δ(=C-H, out-of-plane) = 835 cm1.

[Fe(BrL5)(NCSe)]:
C21H21FeN4O2Br2Se ([M-NCSe−]+ = 551.053); IR (KBr): v(N-H) = 3260 cm1, v(C-
H) = 2928, 2868 cm1, v(NCSe) = 2056 cm1, v(C=N) = 1638, 1610 cm1, v(C=C
arom.) = 1526 cm1, δ(=C-H, out-of-plane) = 835 cm1.

[Fe(BrL5)(N3)]:
C20H21FeN6O2Br2 ([M-N−

3 ]+ = 551.053); IR (KBr): v(N-H) = 3244 cm1, v(C-
H) = 2928, 2910, 2868 cm1, v(N3) = 2052 cm1, v(C=N) = 1638, 1610 cm1, v(C=C
arom.) = 1524 cm1, δ(=C-H, out-of-plane) = 822 cm1.

Dendritic-[Fe(ClL5)(Cl)]3:

The first generation of the polyamine dendrimer (1.13 mmol, M = 488.8 g/mol) and 5-
chlorosalicylaldehyde (6.79 mmol) or 5-bromosalicylaldehyde (6.79 mmol), respectively,
were dissolved in 75 cm3 methanol. The solution was boiled under reflux for 30 minutes,
FeCl3 · 6H2O (3.39 mmol) in 25 cm3 methanol was added and the mixture was further
boiled for 2 h. After cooling in a fridge for 24 h, the product was filtered off and dried at
room temperature.

Dendritic-[Fe(ClL5)(Cl)]3:
C66H76Fe4N10O8Cl12; Calculated: C 44.38 %; Found: C 41.23 %; IR (KBr): v(C-
H) = 2955, 2874 cm1, v(C=N) = 1614 cm1, v(C=C arom.) = 1520 cm1, δ(=C-H,
out-of-plane) = 827 cm1.
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Fig. 8 The Mössbauer spectrum of the dendritic complex system with [Fe(BrL5)]-units with an isomer shift
(relative to αFe) δIS = 0.40 mm/s and quadrupole splitting �EQ = 0.76 mm/s

Dendritic-[Fe(BrL5)(Cl)]3:
C66H76Fe4N10O8Br6Cl6; Calculated: C 38.61%; Found: C 38.88 %; IR (KBr): v(C-
H) = 2945, 2835 cm1, v(C=N) = 1609 cm1, v(C=C arom.) = 1516 cm1, δ(=C-H,
out-of-plane) = 827 cm1.

3 Results and discussion

The collected Mössbauer spectra in Figs. 1–9 as well as the corresponding parameters of
all compounds, listed in Table 1, are related to α−iron. To record the spectra 100 mg of the
Cl-salten (ClL5) complexes have been used within approximately 24 h and 100 mg of the
Br-salten (BrL5) complexes within approximately 48 h, respectively.

As expected, the chloride complexes [Fe(XL5)Cl] are in high spin (HS) state (S = 5/2).
Substitution of the monodentate anionic ligand chloride with the pseudohalides thiocyanate,
selenocyanate or azide did not affect the spin state at room temperature. The quadrupole
splittings range from 0.76 mm/s to 1.19 mm/s and the isomer shifts from 0.31 mm/s to
0.45 mm/s. Thereby no trend is observable.

The spectra of the ClL5-complexes reveal an increasing ligand field strength with a
decreasing quadrupole splitting from monodentate ligands chloride via thiocyanate to
selenocyanate:

�EQ(Cl−) > �EQ(NCS−) > �EQ(NCSe−)

In contrast to that, the spectra of the BrL5-complexes reveal the opposite effect. Herein
the thiocyanate has the same quadrupole splitting as the selenocyanate and, in addition, the
difference between chloride and azide is only insignificantly larger:

�EQ(Cl−) < �EQ(N−
3 ) < �EQ(NCS−) ∼= �EQ(NCSe−)

The spectra of the dendritic compounds dendritic-[Fe(ClL5)] and dendritic-[Fe(BrL5)]
reveal approximately the same value for the isomer shifts and quadrupole splittings.
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Fig. 9 The Mössbauer spectrum of the dendritic complex system with [Fe(ClL5)]-units with an isomer shift
(relative to αFe) δIS = 0.39 mm/s and a quadrupole splitting �EQ = 0.76 mm/s

In conclusion, we synthesised seven mononuclear as well as two dendritic trinuclear
coordination compounds that are in the HS state at room temperature. Ongoing investi-
gations are low temperature IR spectroscopy measurements as well as further Mössbauer
spectroscopy especially at low temperatures to possibly reveal a spin transition and single
crystal structure analysis to possibly determine a relation between �EQ and a distortion of
the coordination sphere.
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