Aspartic acid interaction with cobalt(II) in dilute aqueous solution: A ⁵⁷Co emission Mössbauer spectroscopic study

Alexander A. Kamnev · Anna V. Tugarova · Krisztina Kovács · Zoltan Homonnay · Erno Kuzmann · Attila Vértes

© Springer Science+Business Media B.V. 2011

Abstract Emission (⁵⁷Co) Mössbauer spectra of the aspartic acid—⁵⁷CoCl₂ system were measured at T = 80 K in frozen aqueous solution and in the form of a dried residue of this solution. The Mössbauer spectra, besides a weak contribution from after-effects, showed two Fe²⁺/Co²⁺ components which were ascribed to octahedrally and tetrahedrally coordinated ⁵⁷Co^{II} microenvironments in the Asp–cobalt(II) complex. This dual coordination mode may be due to the involvement of the second terminal carboxylic group of aspartic acid in the coordination sphere of Co.

Keywords Cobalt(II) complexes • Aspartic acid • ⁵⁷Co emission Mössbauer spectroscopy

Abbreviations

EMS Emission Mössbauer spectroscopy Asp Aspartic acid

1 Introduction

Interaction of amino acids and oligopeptides with transition metal ions is of general interest as an approach to modelling metal binding within the active centres of

A. A. Kamnev · A. V. Tugarova

The material was originally presented at the International Conference on the Applications of the Mössbauer Effect (ICAME 2011), 25–30 September 2011, Kobe, Japan.

Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russia

K. Kovács · Z. Homonnay (⊠) · E. Kuzmann · A. Vértes Institute of Chemistry, Eötvös Loránd University, P.O.Box 32, 1518, Budapest, Hungary e-mail: homonnay@ludens.elte.hu

metalloenzymes, where usually a few amino acid residues form a specific cationbinding site [1, 2]. As for ⁵⁷Co emission Mössbauer spectroscopy (EMS), which has so far been rarely used in biological research [3–5], such studies are also necessary to form a database for a reliable interpretation of EMS data obtained for more complicated biological systems [4–6].

Aspartic acid (Asp; HOOC–CH(NH₂)–CH₂–COOH), an amino acid commonly present as a constituent in proteins [7], is also found, among other free amino acids, in plant root exudates [8]. K-Mg aspartate is a well-known medicine widely used in adjuvant therapy of heart diseases [9]. In addition, transition metal aspartates are used as a bioavailable form of mineral additives in feedstuff [10].

In this work, interaction of L-Asp with cobalt(II) ions in aqueous medium was studied using ⁵⁷Co EMS in frozen solution and for its dried residue.

2 Experimental

Emission Mössbauer spectra of the aspartic acid—⁵⁷CoCl₂ system (0.2 ml, 2 mM Asp, incubated with 4.5 MBq carrier-free ⁵⁷CoCl₂ and then rapidly frozen in liquid nitrogen) were measured at T = 80 K in frozen aqueous solution. The air-dried residue of this solution was also measured at 80 K. Details of the measurement procedure were reported earlier [6]. The Mössbauer spectra were evaluated using the MOSSWINN program [11].

3 Results and discussion

A typical emission spectrum is shown in Fig. 1; the calculated Mössbauer parameters are listed in Table 1. For both the spectrum of the frozen aqueous solution and that of its dried residue, the best fit was achieved using three components, with two quadrupole doublets representing different high-spin daughter ferrous forms stabilised after the ${}^{57}\text{Co}{\rightarrow}{}^{57}\text{Fe}$ nuclear transition (see Table 1). The residual ${}^{57}\text{Fe}{}^{III}$,

Table 1 Mössbauer parameters calculated from ⁵⁷ Co emission Mössbauer spectra for aspartic acid
(0.2 ml, 2 mM) incubated with 1.2 mCi ⁵⁷ CoCl ₂ and then rapidly frozen in liquid nitrogen (measured
at $T = 80$ K, in frozen aqueous solution or dried)

Sample	Multiplet ^a	δ , ^b mm s ⁻¹	$\Delta,^{ m c}~{ m mm}~{ m s}^{-1}$	Γ_{exp} , ^d mm s ⁻¹	A, ^e %
Frozen solution	Doublet 1	1.21(2)	2.82(3)	0.60(3)	72(7)
	Doublet 2	0.96(7)	2.3(1)	0.7(1)	19(8)
Dried residue	Doublet 1	1.15(1)	2.60(1)	0.59(2)	68(5)
	Doublet 2	0.80(3)	2.37(5)	0.63(7)	24(5)

^aMain doublets corresponding to daughter ⁵⁷Fe^{II} forms stabilised after the ⁵⁷Co \rightarrow ⁵⁷Fe nuclear transition (the residual ⁵⁷Fe^{III} forms result from after-effects). ^bIsomer shift (relative to α -Fe at room temperature). ^cQuadrupole splitting. ^dFull line width at half maximum. ^eRelative resonant absorption area. Calculated errors (in the last digits) are given in brackets.

which accounts for less than 10% of the spectral area in each spectrum, is due to after-effects [3, 5, 6]. Note that the resulting species under study using EMS may be described as an ⁵⁷Fe complex substituted for the 'parent' ⁵⁷Co binding site (retaining its geometry) [6]. In ⁵⁷Co emission Mössbauer spectra, lines are commonly broader than those in ⁵⁷Fe absorption experiments owing to special effects [5, 6, 12]. Thus the Γ_{exp} values obtained (see Table 1) are quite reasonable.

It should be noted that our earlier EMS data for other two amino acids, o-aminobenzoic (anthranilic) acid and tryptophan, showed one daughter ⁵⁷Fe^{II} component only in each case [6]. In the case of Asp, the presence of the second terminal carboxylic group (in addition to the typical carboxylic group with the neighbouring α -amino group) allows a dual coordination mode. Note that in the system studied, the Asp concentration (2 mM) was by ca. two orders of magnitude higher than that of ⁵⁷Co²⁺, allowing an equilibrium between the two complex forms in solution.

Thus, the parameters of doublet 1 (see Table 1) are typical for an octahedral coordination microenvironment of the parent high-spin ${}^{57}Co^{II}$ "inherited" by the daughter ${}^{57}Fe^{II}$. The significantly lower δ and Δ values for doublet 2 in both cases evidently represent tetrahedral coordination, which is relatively common for cobalt(II) complexes [1, 6].

4 Conclusions

⁵⁷Co emission Mössbauer spectra of the aqueous aspartic acid—⁵⁷CoCl₂ solution (both in frozen state and in dried form at T = 80 K) revealed two Co²⁺ components which can be ascribed to octahedral and tetrahedral ⁵⁷Co^{II} coordination in the Co^{II-} aspartic acid complex. This dual coordination mode can be interpreted as being due to the partial involvement of the additional terminal carboxylic group of aspartic acid in the coordination sphere of Co^{II}.

Acknowledgements This work was supported by NATO (Project ESP.NR.NRCLG 982857), Hungarian Science Fund (OTKA Projects K68135, 100424, K71215, NN84307), and under the Agreements on Scientific Cooperation between the Russian and Hungarian Academies of Sciences for 2008–2010 (Projects 45, 46) and for 2011–2013 (Projects 28, 29).

References

- 1. Holm, R.H., Kennepohl, P., Solomon, E.I.: Chem. Rev. 96, 2239-2314 (1996)
- 2. Maret, W.: Metallomics 2, 117–125 (2010)
- 3. Nagy D.L.: Hyperfine Interact. 83, 3–19 (1994)
- 4. Nath A.: J. Nucl. Radiochem. Sci. 11, A1-A3 (2010)
- 5. Kamnev, A.A.: J. Mol. Struct. **744–747**, 161–167 (2005)
- Kamnev, A.A., Kulikov, L.A., Perfiliev, Y.D., Antonyuk, L.P., Kuzmann, E., Vértes, A.: Hyperfine Interact. 165, 303–308 (2005)
- 7. Lee, T., Lin, Y.K.: Cryst. Growth Des. 10, 1652–1660 (2010)
- Simons, M., Permentier, H.P., de Weger, L.A., Wijffelman, C.A., Lugtenberg, B.J.J.: Mol. Plant-Microbe Interact. 10, 102–106 (1997)
- 9. Iezhitsa, I.N., Spasov, A.A., Zhuravleva, N.V., Sinolitskii, M.K., Voronin, S.P.: Magnesium Res. **17**, 276–292 (2004)
- Voronin, S.P., Golubov, I.I., Gumenyuk, A.P., Sinolitskii, M.K.: Bioavailable form of trace element additives to feed composites for animals and poultry. Patent of the Russian Federation No. 2411747, IPC A23K001/16 (2008)
- 11. Klencsár, Z., Kuzmann, E., Vértes, A.: J. Radioanal. Nucl. Chem. 210, 105–118 (1996)
- Perfiliev, Y.D., Rusakov, V.S., Kulikov, L.A., Kamnev, A.A., Alkhatib, K.: Hyperfine Interact. 167, 881–885 (2006)