

Magnetic sublattices in Np₂Co₁₇ and Np₂Ni₁₇

E. Colineau¹ · A. Hen^{1,2} · J.-P. Sanchez³ · J.-C. Griveau¹ · N. Magnani¹ · R. Eloirdi¹ · I. Halevy^{2,4} · P. Gaczyński¹ · I. Orion² · A. B. Shick⁵ · R. Caciuffo¹

© Springer International Publishing Switzerland 2016

Abstract Rare-earth-based compounds R_2T_{17} (R=Rare earth; T=Transition metal) have been extensively studied and developed for applications as permanent magnets. The actinide-based analogues, however, are much less documented and we report here about the magnetic properties of Np₂Co₁₇ and Np₂Ni₁₇, as inferred from ²³⁷Np Mössbauer spectroscopy, the best resonance in actinides, and specific heat.

Keywords Mössbauer spectroscopy · Neptunium · Actinides · Magnetism

1 Introduction

Among the large family of rare earth intermetallics, the R_2T_{17} (R=Rare earth; T=Transition metal) series has been particularly studied and developed for applications as permanent

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13–18 September 2015

- E. Colineau eric.colineau@ec.europa.eu
- ¹ European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe, Germany URL: http://itu.jrc.ec.europa.eu
- ² Nuclear Engineering Department, Ben Gurion University, Beer-Sheva, Israel
- ³ CEA, INAC-SPSMS, 38000 Grenoble, France
- ⁴ Physics Department, Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva, Israel
- ⁵ Institute of Physics, ASCR, Na Slovance 2, CZ-18221 Prague, Czech Republic

magnets [1]. It is interesting to extend these studies to actinide analogues, with their wider felectrons wavefunctions, to enhance exchange interactions and tune the magnetic properties. Neptunium, with usually the $5f^4$ electronic configuration in intermetallic compounds, is a good candidate as, furthermore, ²³⁷Np Mössbauer spectroscopy is the best resonance in actinides and allows to observe well-resolved hyperfine interactions [2].

We have recently synthesized Np₂Co₁₇ [3, 4] and Np₂Ni₁₇ [5], finding that they both crystallize in the Th₂Ni₁₇-type hexagonal structure ($P6_3$ /mmc space group), a structure with two non-equivalent crystallographic Np sites. Furthermore, we have studied their electronic and magnetic properties using an array of experimental and theoretical techniques. Magnetization, specific heat, XMCD and Mössbauer spectroscopy have shown that both compounds order magnetically, however with substantial differences: Np₂Co₁₇ is a ferromagnet with a Curie temperature above room temperature [4], whereas Np_2Ni_{17} is a ferrimagnet with an ordering temperature of 17.5 K and a large ordered magnetic moment on just one of the two distinct crystallographic Np sites whereas the other Np site exhibits only a small induced magnetic moment [5]. In addition to the neptunium sublattices, the cobalt and nickel atoms also carry magnetic moments. ²³⁷Np Mössbauer spectroscopy appears therefore extremely useful here to determine the microscopic ordered moments carried by neptunium ions and compare them with the macroscopic moments observed by other techniques. We focus in this paper on the Mössbauer results obtained for Np₂Co₁₇ and Np₂Ni₁₇, the information gained about the magnetic sublattices and discuss the magnetic properties in comparison with rare earth and uranium analogues. We also show specific heat data to gain additional information about magnetic, electronic and phonon properties of both compounds.

Fig. 2 Fits of the ²³⁷Np Mössbauer spectra (not shown for clarity) recorded at T = 55Kand T = 4.2 K for Np₂Ni₁₇ and Np₂Co₁₇ at T = 4.2K. The *bold lines* (*blue* and *red*) represent the two subspectra corresponding to the two 2b and 2d neptunium sites, respectively. The *thin line* (*black*) represents the resulting total fit (sum of the two subspectra)

2 Experimental

Due to the contamination risk generated by the radiotoxicity of the neptunium element, all operations of preparation and encapsulation have been carried out in shielded gloveboxes under inert nitrogen atmosphere following well-established safety procedures. The ²³⁷Np Mössbauer spectra were recorded in a transmission-geometry spectrometer using the sinusoidal drive motion of a ~100 mCi ²⁴¹Am metal source kept at a constant temperature of 4.2 K. The absorbers were prepared by grinding the samples to a fine powder to ensure a constant surface density with an optimal thickness of ~140 mg of Np per square centimeter. A liquid-helium cryostat was used to vary the samples temperature. The velocity scale of the spectrometer was calibrated with reference to a NpAl₂ sample (B_{hf} = 330 T at 4.2

K). The crystallographic characterization and general physical properties of Np_2Co_{17} and Np_2Ni_{17} can be consulted in previous reports [3–5].

3 Results and discussion

The ²³⁷Np Mössbauer spectra recorded at 4.2 K reveal complex patterns split by magnetic hyperfine interactions, indicating the occurrence of magnetic ordering in both compounds (Fig. 1). Two distinct magnetic sites are required to correctly reproduce the spectra: this can be immediately seen by the observation of a double external peak around 90 mm/s in Np₂Co₁₇ and by the presence of a large weak-field component in Np₂Ni₁₇ (central, unresolved peak). The detail of each subspectrum is shown in Fig. 2. It is obvious that the two sites in Np₂Co₁₇ have hyperfine fields with relatively close values, namely B_{hf} = 338 T and B_{hf} = 351 T (here the magnetic exchange dominates the crystal field interaction), whereas in Np₂Ni₁₇, we observe the coexistence of a large-field (B_{hf} = 483 T) and a weak-field (B_{hf} = 40 T). The ordered moments carried by neptunium were deduced using the simple relation B_{hf}/ μ_{Np} = 215 T/ μ_B [2].

These results are consistent with the trend observed in the rare earth analogues [6], however the one order of magnitude reduction of the magnetic moment on the (2d) site in Np₂Ni₁₇ is uncommon and could be explained by a crystal field-exchange model where a non-magnetic singlet on the 2d site carries just an induced moment due to a small exchange field. Indeed, for an exchange field of 21 T oriented along the c-axis, one obtains $\mu_{Np}(2d)$ = 0.19 μ_B and $\mu_{Np}(2b) = 2.21 \ \mu_B$, in agreement with experiment [5].

When temperature is increased, the magnetic moments in Np₂Ni₁₇ rapidly decrease down to zero at $T_N = 17.5$ K, following a Brillouin function with an effective J = 1/2(Fig. 3). It is worth mentioning that the moments of both sites decrease at the same rate, indicating that the same molecular field acts on both sites. Magnetic moments carried by neptunium in Np₂Co₁₇ do not decrease significantly in the temperature range covered by Mössbauer spectroscopy (The Lamb-Mössbauer factor decreases rapidly with increasing temperature, due to the large energy (60 keV) of the Mössbauer transition used in ²³⁷Np). However, as for this compound the saturated magnetic moment was measured by magnetization [4], using the values of the Np ordered moment inferred from Mössbauer spectroscopy it is possible to estimate the average contribution from the cobalt atoms (Fig. 4). Light rare earths moments couple ferromagnetically with cobalt moments in R2Co17, whereas the coupling is antiferromagnetic for heavy rare earths [1]. Depending on the sign of Np-Co

 Table 1
 Main ²³⁷Np Mössbauer parameters obtained for Np₂Ni₁₇ and Np₂Co₁₇

Compound	T (K)	Site	$\delta_{\rm IS}~({\rm mm/s})$	e ² qQ (mm/s)	\mathbf{B}_{hf}	$\mu_{\mathrm{Np}}\left(\mu_{\mathrm{B}}\right)$	W (mm/s)
Np2Ni17	4.2	(2b)	-12.5(6)	+17.6(3)	483(1)	2.25(4)	4.1(1)
		(2d)	-14.2(6)	-2.0(5)	40(2)	0.19(5)	4.1(1)
	55	(2b)	-12.8(5)	23.5(1)	0	0	4.1(1)
		(2d)	-14.0(5)	11.3(1)	0	0	4.1(1)
Np ₂ Co ₁₇	4.2	(2b)	-15.4(2)	-4.5(3)	338(1)	1.57(4)	2.9(1)
		(2d)	-13.7(2)	-12.2(3)	351(1)	1.63(4)	2.9(1)

 δ_{IS} is given versus the standard absorber NpAl₂

coupling in Np₂Co₁₇, the moment carried by cobalt is estimated to 1.58 or 1.95 μ_B per atom. The smaller value, corresponding to a ferromagnetic Np-Co coupling, compares well with the values observed in rare earths analogues (see for example [7]).

Very few studies of these systems exist in actinides, but a comparison can be done with the U₂Co_{17-x}Si_x system [8], which also orders ferromagnetically well above room temperature. Contrarily to Np₂Co₁₇, in U₂Co_{17-x}Si_x, magnetization curves was measured up to 900 K and the Curie temperature was determined. The extrapolation to x=0 suggest a Curie temperature T_C ~1000 K and a saturated magnetization M_S ~26 μ_B / f.u. for U₂Co₁₇. In this case, the respective contributions from U and Co could not be determined, but the global value compares well with Np₂Co₁₇ (M_S ~30 μ_B / f.u.) and would suggest a smaller moment carried by uranium compared to neptunium, if one assumes similar contributions from the cobalt sublattice.

The Mössbauer spectrum of Np₂Ni₁₇ in the paramagnetic state confirms the presence of two inequivalent Np sites, in agreement with the crystallographic structure (Fig. 2). The paramagnetic state of Np₂Co₁₇ is out of the experimental temperature range for ²³⁷Np Mössbauer spectroscopy. The main fitted Mössbauer parameters are listed in Table 1. The values of the isomer shifts in both compounds suggest that neptunium ions are in the trivalent state (electronic configuration $5 f^4$).

Figure 5 shows the specific heat of Np_2Ni_{17} and Np_2Co_{17} , close to the Dulong-Petit value at room temperature. Both curves can be approximated by a simple Debye law plus an electronic term, that provides an estimate of the Debye temperature and Sommerfeld coefficient (Table 2).

Fig. 5 Specific heat of Np₂Co₁₇ (*red circles*) and Np₂Co₁₇ (*blue diamonds*). The curves can be roughly reproduced (*red* and *blue lines*, respectively) by a simple Debye law, plus an electronic term (~ γ T) that provides an estimation of the Debye temperature and Sommerfeld coefficient. At room temperature, C(T) reaches closely the Dulong-Petit value. Inset: Specific heat of Np₂Co₁₇ at low temperature. C(T)/T can be fully described by an electronic (γ), a phononic (β T²) and a nuclear (C₂T⁻³) contribution. γ is the Sommerfeld coefficient. The Debye temperature can be estimated to $\theta_D \approx 260$ K from the β value through the relation $\theta_D = (12\pi^4 nR/5\beta)^{1/3}$ where R is the molar gas constant and n the number of atoms in the formula unit (here half of the formula unit since we expressed the specific heat per mole of neptunium). The nuclear term is evaluated from the value of the hyperfine field

Compound	γ (mJ / Np.:	mol.K ²)	$\theta_{\rm D}$ (K)			
	C (LT)	C (FTR)	C (LT)	C (FTR)	Mössbauer	
Np ₂ Ni ₁₇	126	48	182	309	236	
Np ₂ Co ₁₇	82	79	260	313	-	

Table 2 Debye temperature (θ_D) and Sommerfeld coefficient (γ) estimated from the specific heat (C), at low temperature (LT) and for the full temperature range (FTR), for Np₂Ni₁₇ and Np₂Co₁₇

The Debye value inferred from Mössbauer for Np2Ni17 is also given

At low temperature (inset), we notice for Np₂Co₁₇ a sudden increase of C(T) when the temperature decreases below ~ 5 K, which attributed to a nuclear Schottky term due to the splitting of the I = 5/2 nuclear ground level of the ²³⁷Np nuclei by the hyperfine field: $C_N = C_2/T^2$, with $C_2 = (R/3) (\mu B_{hf}/k_BI)^2 I (I+1) = 384 \text{ mJ Np.mol}^{-1} \text{ K}$, using the average value $B_{hf} = 344$ T inferred from Mössbauer spectroscopy. A similar behaviour has been reported for Np₂Ni₁₇ [5] and a number of other neptunium systems (see for example [9–12]). The linear part of the C(T)/T = f(T²) plot (inset of Fig. 5) is reproduced assuming electronic (γ) and phonon (β T²) contributions, which allow to estimate again the Sommerfeld coefficient and the Debye temperature (see Table 2). Note that the magnetic contribution for a ferro- or ferri-magnet is expected to vary as C(T)/T ~ \sqrt{T} , which was found to be negligible in the temperature range used here. Indeed, both low-temperature

and full temperature range estimates of the Sommerfeld coefficient and Debye temperature of Np₂Co₁₇ agree relatively well (see Table 2). This is not the case for Np₂Ni₁₇, where the magnetic and Schottky anomalies [5] hamper the low temperature estimates of γ and θ_D that should therefore be taken with care.

Finally, despite a limited range of temperature in Mössbauer experiments, the thermal dependence of the resonant fraction in Np₂Ni₁₇ can also provide an estimate of the Debye temperature: $\theta_D \approx 236$ K (Fig. 6). This value is consistent with the values estimated from specific heat data, average between the low-temperature estimate and the full temperature range estimate (see table 2).

4 Summary

The magnetic moments of the two neptunium sublattices in Np₂Co₁₇ and Np₂Ni₁₇ have been measured by ²³⁷Np Mössbauer spectroscopy. The two Np sites in Np₂Co₁₇ carry similar magnetic moments. As Np₂Co₁₇ orders at high temperature, the temperature dependence of the magnetic moments could not be followed, but the ordered moments carried by cobalt atoms have been estimated by comparison with the macroscopic magnetization. On the contrary, only one Np site carries a large ordered moment in Np₂Ni₁₇, whereas the other site displays only a weak moment induced by the molecular field. The temperature dependence of the magnetic moment follows a Brillouin function with J = 1/2, as expected for a molecular field mainly associated with the Ni sublattice. The moment carried by nickel atoms could not be estimated since the macroscopic magnetization does not saturate. The hyperfine magnetic field inferred from Mössbauer spectroscopy was used to account for the low-temperature upturn of the specific heat in Np₂Co₁₇. The Debye temperature of Np₂Ni₁₇ was estimated by the combination of Mössbauer spectroscopy and specific heat measurements.

Acknowledgments We thank F. Kinnart and P. Amador Celdran, for their technical support. The highpurity neptunium metal required for the fabrication of the sample was made available through a loan agreement between Lawrence Livermore National Laboratory and ITU, in the frame of a collaboration involving LLNL, Los Alamos National Laboratory, and the U.S. Department of Energy. A. H. acknowledges the European Commission for support in the frame of the Training and Mobility of Researchers programme.

References

- 1. Kumar, K.: J. Appl. Phys. 63, R13 (1988)
- 2. Sanchez, J.-P., Colineau, E., Vulliet, P., Tomala, K.: J. Alloys Comp. 275-277, 154 (1998)
- Hen, A., Heathman, S., Eloirdi, R., Griveau, J.-C., Elgazzar, S., Oppeneer, P.M., Halevy, I., Orion, I., Caciuffo, R.: Phys. Rev. B 90, 054107 (2014)
- Halevy, I., Hen, A., Orion, I., Colineau, E., Eloirdi, R., Griveau, J.-C., Gaczyński, P., Wilhelm, F., Rogalev, A., Sanchez, J.-P., Winterrose, M.L., Magnani, N., Shick, A.B., Caciuffo, R.: Phys. Rev. B 85, 014434 (2012)
- 5. Hen, A., Magnani, N., Griveau, J.-C., Eloirdi, R., Colineau, E., Sanchez, J.-P., Halevy, I., Kozub, A.L., Shick, A.B., Orion, I., Caciuffo, R.: Phys. Rev. B **92**, 024410 (2015)
- 6. Moze, O., Cadogan, J.M., Kennedy, S.J., Buschow, K.H.J.: Physica B 319, 35 (2002)
- 7. Moze, O., Caciuffo, R., Gillon, B., Kayzel, F.E.: J. Magn. Magn. Mater. 104-107, 1394 (1992)
- Andreev, A.V., Tereshina, E.A., Šantavá, E., Koyama, K., Homma, Y., Satoh, I., Yamamura, T., Shiokawa, Y., Watanabe, K.: J. Alloys Comp. 450, 51 (2008)
- Colineau, E., Javorsky, P., Boulet, P., Wastin, F., Griveau, J.-C., Rebizant, J., Sanchez, J.-P., Stewart, G.R.: Phys. Rev. B 69, 184411 (2004)
- 10. Colineau, E., Wastin, F., Rebizant, J.: J. Phys. Condens. Matter 18, 411 (2006)
- Colineau, E., Sanchez, J.-P., Wastin, F., Javorsky, P., Riffaud, E., Homma, Y., Boulet, P., Rebizant, J.: J.Phys.: Condens. Matter 20, 255234 (2008)
- Colineau, E., Griveau, J.-C., Eloirdi, R., Gaczynski, P., Khmelevskyi, S., Shick, A.B., Caciuffo, R.: Phys. Rev. B 89, 115135 (2014)