149 Sm and 57 Fe nuclear resonant inelastic scattering of filled skutterudites SmFe₄X₁₂ (X: pnictogen)

Satoshi Tsutsui · Hisao Kobayashi · Yoshitaka Yoda · Hitoshi Sugawara · Chihiro Sekine · Takahiro Namiki · Ichimin Shirotani · Hideyuki Sato

© Springer Science+Business Media B.V. 2011

Abstract ¹⁴⁹Sm and ⁵⁷Fe nuclear resonant inelastic scattering (NRIS) measurements were carried out on SmFe₄P₁₂, SmFe₄As₁₂ and SmFe₄Sb₁₂. A clear dip structure of the ⁵⁷Fe NRIS spectrum was found in SmFe₄P₁₂, which was not clearly observed for SmFe₄As₁₂ and SmFe₄Sb₁₂. On the other hand, the line width of the phonon excitation in the ¹⁴⁹Sm NRIS spectrum increases with increasing the ionic radius of the pnictogen. These findings imply that the hybridization between the Sm and Fe phonon modes is correlated to changes in the ionic radius of the pnictogen.

Keywords Filled skutterudite · Nuclear resonant inelastic scattering · Element-specific phonon spectrum

1 Introduction

Cage-structured compounds such as filled skutterudites and clathrates have attracted considerable interest owing to their strongly correlated electron systems and

S. Tsutsui (⊠) · Y. Yoda

Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5197, Japan e-mail: satoshi@spring8.or.jp

H. Kobayashi Graduate School of Materials Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan

H. Sugawara Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan

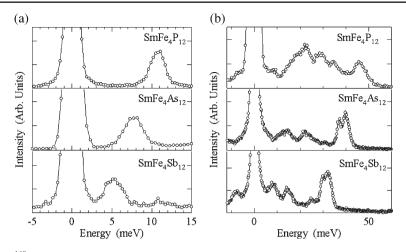
C. Sekine · T. Namiki · I. Shirotani Department of Electric and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

H. Sato

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0937, Japan

application as thermoelectric materials. One of the key features of these compounds is the presence of a low-lying optical mode associated with the atoms inserted into the cage structure, which is called a guest mode. Since the phonon-glass-electron-crystal model was first proposed [1], the importance of guest modes for thermal insulation has been discussed [2–5]. In strongly correlated electron systems, on the other hand, superconductivity in β -pyrochlore compounds is an example of superconductivities correlated with low-lying guest modes [6].

Nuclear resonant inelastic scattering (NRIS) is a unique technique for investigating element-specific phonon spectra in materials. It can be applied to a limited number of elements including Mössbauer isotopes that can be excited by sunchrotron radiation X-rays. However, it is a useful tool for elucidating atomic dynamics in cage-structured compounds. In the present work, the atomic dynamics in filled skutterudites were investigated by performing ¹⁴⁹Sm and ⁵⁷Fe NRIS experiments.


2 Experimental procedure

NRIS measurements were carried out at BL09XU of SPring-8 in Japan. 57 Fe NRIS measurement of SmFe₄P₁₂ at 300 K was carried out with 3.5 meV resolution using a Si(5 1 1)-Si(9 7 5) nested-type high-resolution monochromator (HRM) and those of SmFe₄As₁₂ and SmFe₄Sb₁₂ at 300 K were carried out with 1.6 meV resolution using a Ge(4 2 2)-Si(9 7 5)-Si(9 7 5) HRM [7]. 149 Sm NRIS measurements of SmFe₄P₁₂ and SmFe₄Sb₁₂ at 25 K (SmFe₄As₁₂ at 9 K) were carried out with 1.5 meV resolution using a Si(4 4 0)-Si(16 8 8)-Ge(4 2 2) HRM (a Si(4 4 0)-Si(16 8 8) nested-type HRM) [7, 8].

3 Experimental results and discussion

The ¹⁴⁹Sm NRIS spectra of SmFe₄ X_{12} (X: P, As and Sb) are shown in Fig. 1a. All the spectra obtained exhibit relatively sharp excitation, suggesting the presence of a dispersionless mode similar to an Einstein mode. Similar spectra have already been reported for other filled skutterudites [4, 9]. The excitation energy decreases with increasing ionic radius of X, whereas the line width increases with increasing X ionic radius. With respect to the excitation energy, the present results indicate that the guest-free space is an important parameter. This was also suggested by the results of other experiments on filled skutterudites [10–12].

The ⁵⁷Fe NRIS spectra of SmFe₄ X_{12} at 300 K are shown in Fig. 1b. Unlike the ¹⁴⁹Sm NRIS spectra, the contribution of the Fe atoms to the acoustic modes was clearly observed in the ⁵⁷Fe spectra. As was reported Ref. [9], a dip structure was found in the ⁵⁷Fe NRIS spectrum of SmFe₄P₁₂ in spite of the inferior energy resolution of 3.5 meV. The energy at which the dip structure was found is in good agreement with that of Sm phonon excitation observed by ¹⁴⁹Sm NRIS, although the Sm phonon energy is slightly shifted, mainly due to the shirinkage of the unit cell volume with decreasing temperature [13]. The presence of the dip structure is evidence that the guest modes are hybridized with the acoustic modes. This was supported by the reasonable agreement between the energy of the dipstructure in the ⁵⁷Fe NRIS spectra and the Einstein temperature obtained by EXAFS experiments

Fig. 1 a^{149} Sm nuclear resonant inelastic scattering spectra of SmFe₄P₁₂ at 25 K, SmFe₄As₁₂ at 9 K and SmFe₄Sb₁₂ at 25 K. b^{57} Fe nuclear resonant inelastic scattering spectra of SmFe₄P₁₂, SmFe₄As₁₂ and SmFe₄Sb₁₂ at 300 K

on the series of RFe_4P_{12} (*R*: rare-earth). On the other hand, the dip structure in the SmFe_4As₁₂ or SmFe_4Sb₁₂ spectrum was less clearly observed than that in the SmFe_4P_{12} spectrum. The result for SmFe_4Sb_{12} is very similar to that for EuFe_4Sb_{12} [14, 15]. In addition, the X-ray absorption spectrum of SmFe_4Sb_{12} (EuFe_4Sb_{12}) using the Sm (Eu) L_3 -edge demonstrates that the Sm (Eu) is trivalent (divalent) [16, 17]. These findings imply that the Fe atomic dynamics are correlated to the X atoms in the series of SmFe_4X_{12} compounds.

Hereafter, we discuss the X-dependence of the dip structure in the ⁵⁷Fe NRIS spectrum and the line width in the ¹⁴⁹Sm NRIS spectra of SmFe₄X₁₂ compounds. We interpret the dip structure and the line width in terms of the change in the hybridization between the Sm modes and acoustic modes including the Fe atoms. When the sum rule for NRIS measurements [18] is applied to the present results, the average force constants are 293 ± 10 , 189 ± 2 and 156 ± 4 N / m for SmFe₄P₁₂, SmFe₄As₁₂ and SmFe₄Sb₁₂, respectively, at the Fe site. This infers that the cage consisting of Fe and X atoms is softened by changes in the atomic radius of X. This softening leads to strong hybridization between the Sm modes. Consequently, the line width in the Sm NRIS spectra, which reflects the density of states at the Sm site, is the broadened by the dispersion of the Sm modes as guest modes.

4 Summary

We carried out ¹⁴⁹Sm and ⁵⁷Fe NRIS measurements on the series of SmFe₄ X_{12} . The *X*-dependence of the NRIS spectra is interpreted in terms of the *X*-dependence of the hybridization between Fe modes, which partially play the role of acoustic modes, with Sm modes as guest modes.

Acknowledgements The author ST appreciates T. Hasegawa, N. Ogita and M. Udagawa for their fruitful discussion. NRIS experiments were carried out under the approval of JASRI (Proposal Nos. 2004B0377-ND3b-np, 2005A370-ND3b-np, 2005B0041, 2007B1107, 2008A1054). This work was supported by Grants-in-Aid for Scientific Research on Priority Area "Skutterudite" (No. 18027017) and on Innovative Areas "Heavy Electrons" (No. 20102004 and 20102005) from MEXT, Japan and Grants-in-Aid for Young Scientists (No. 20740181) and the Scientific Research C (No. 22540345) from JSPS.

References

- 1. Slack, G.A.: In: Rowe D. (ed.) CRC handbook of thermoelectrics, p. 407. CRC press, Boca Raton (1995)
- 2. Keppens, V., et al.: Nature 395, 876 (1998)
- 3. Hermann, R.P., et al.: Phys. Rev. Lett. 90, 135505 (2003)
- 4. Long, G.J., et al.: Phys. Rev. B 71, 140302 (2005)
- 5. Tsutsui, S., et al.: J. Phys. Soc. Jpn. 77, 033601 (2008)
- 6. Nagao, Y., et al.: J. Phys. Soc. Jpn. 78, 064702 (2009) and references therein
- 7. Yoda, Y., et al.: AIP Conf. Proc. 879, 926 (2007)
- 8. Yoda, Y.: Private communication.
- 9. Tsutsui, S., et al.: Hyperfine Interact. 168, 1073–1077 (2006)
- 10. Matsuhira, K., et al.: J. Phys. Soc. Jpn. 78, 124601 (2009)
- 11. Mizumaki, M., et al.: J. Phys. Soc. Jpn. 80, 074603 (2011)
- 12. Tsutsui, S, et al.: J. Phys.: Conf. Ser. 92, 012171 (2007)
- 13. Tsutsui, S., et al.: J. Phys. Soc. Jpn. 77(suppl. A) 257–259 (2008)
- 14. Tsutsui, S., et al.: J. Phys. Soc. Jpn. 76, 065003 (2007)
- 15. Wille, H.-C., et al.: Phys. Rev. B 76, 140301 (2007)
- 16. Mizumaki, M., et al.: Physica B 383, 144 (2006)
- 17. Bauer, E.D., et al.: J. Phys. Cond. Mat. 16, 5095 (2004)
- 18. Lipkin, H.J.: Phys. Rev. B 52, 10073 (1995)